A man who was paralysed in a cycling accident in 2011 has been able to stand and walk with aid after doctors implanted a device that reads his brain waves and sends instructions to his spine to move the right muscles.
Gert-Jan Oskam, 40, was told he would never walk again after breaking his neck in a traffic accident in China, but has climbed stairs and walked for more than 100 metres at a time since having the operation.
“A few months ago, I was able, for the first time after 10 years, to stand up and have a beer with my friends,” said Oskam, who is from the Netherlands. “That was pretty cool. I want to use it in my daily life.”
The “digital bridge” is the latest from a team of neuroscientists in Switzerland who have a longstanding programme to develop brain-machine interfaces to overcome paralysis. The project aims to use wireless signals to reconnect the brain with muscles that are rendered useless when spinal cord nerves are broken.
In a previous trial, Oskam tested a system that recreated the rhythmic steps of walking by sending signals from a computer to his spinal cord. While the device helped him take several steps at once, the movement was quite robotic and had to be triggered by a button or sensor.
READ ALSO: Health experts urge insurance coverage for IVF treatment
For the latest update, Prof Jocelyne Bloch, a neurosurgeon at Lausanne University hospital, installed electrodes on Oskam’s brain that detect neural activity when he tries to move his legs. The readings are processed by an algorithm that turns them into pulses, which are sent to further electrodes in his spine. The pulses activate nerves in the spine, switching on muscles to produce the intended movement.
“What we’ve been able to do is re-establish communication between the brain and the region of the spinal cord that controls leg movement with a digital bridge,” said Prof Grégoire Courtine at the Swiss Federal Institute of Technology in Lausanne. He said the system could “capture the thoughts of Gert-Jan and translate those thoughts into stimulation of the spinal cord to re-establish voluntary leg movements”.